Co-mingling of allergens in spices

Phil Johnson, Ferlie Gaskin, Joe Baumert and Steve Taylor University of Nebraska, Lincoln

Overview

- Introduction to FARRP
- Introduction to food allergies
- Recent occurrences of allergens in spices
 - Peanut in cumin
 - Peanut in garlic
 - Almond in paprika and cumin
- Conclusions and recommendations

FARRP (www.farrp.org)

- Food Allergen Research and Resource Program
- Industry-oriented research and outreach program (>90 member companies)
- Sits within the Department of Food Science & Technology at the University of Nebraska, Lincoln
- Analytical lab (ISO 17025), expert advice, research

FARRP Analytical Laboratory

- Almond •
- Buckwheat •
- Cashew •
- Clam •
- Crustacea
- Egg •
- Gluten •
- Hazelnut •
- Histamine •

© 2015

• Lupine

- Milk (Total Milk, β-
 - Lactoglobulin, Casein)
 - Mustard •
 - Peanut
 - Pecan •
 - Pistachio
 - Sesame
 - Soy
 - Walnut

FY 2014 43,942 Analyses Performed

Food allergy

- Affects 1-3% of the adult population of Western nations
- Reactions can occur at low (mg) levels of allergen, can be fatal
- Caused by particular proteins in foods
- No cure avoidance only 'treatment'
- Allergen labeling laws in effect in many locales (including USA and EC). Foods on labeling lists vary but are all based on an initial Codex Alimentarius list

The 'Big 8'

• Foods that contain or are derived from :

Milk	Tree Nuts
Eggs	Peanuts
Fish	Wheat
Crustacean Shellfish	Soya
Must be labeled as such i	in the US

• Account for most (not all) allergic reactions

The Risks of Uncontrolled Allergens

- **Regulatory risk** undeclared allergens can lead to product recalls, FDA audits, etc.
- **Business risk** loss of customers, law suits, failed audits (SQF, etc.), cost of product recalls, loss of consumer confidence, loss of retail space for products with your ingredients, allergen control/sanitation, down time, etc.
- Health risk undeclared allergens can cause consumers to have reactions (some of which can be severe and even fatal).

Peanut in Cumin November 2014 - current

Initial Peanut in Cumin Situation

- In November 2014 a random retail analysis (CFIA) of a taco seasoning product was positive for peanut (and almond).
- FARRP analyzed retained samples of taco seasoning

 Concentrations of peanut ranged from 1000 to
 >5000 ppm peanut using several ELISA kits
 - Individual ingredients were then analyzed, cumin was found to be positive for peanut (>5000 ppm)
- A recall of taco seasoning and sauce was initiated

C 2015

Initial Peanut in Cumin Situation

- Late December 2014 a second series of FDA and USDA-FSIS recalls initiated involving well over 500 products and 30+ companies
- Concentrations of peanut ranged from 100 to >5000 ppm peanut in final product, meaning levels of 50,000 to 105,000 ppm peanut in the cumin.
- Ground cumin from sourced from Turkey was implicated in both instances
- FDA did receive consumer reports of alleged allergic reactions from peanut-allergic individuals
- FDA advised peanut allergics to **avoid cumin** and cumincontaining foods.

FDA 2015 Recall data

The Ongoing Cumin Situation

- Since the initial series of recalls involving cumin, many companies are testing for peanut residue in cumin and other spices.
- Random low level positives have been found in whole cumin seed with no visible sign of whole or parts of peanut
 - Generally ranging between 5 and 25 ppm peanut
- Likely due to incidental cross-contact due to agricultural commingling

Testing for allergens in foods

- ELISA (Enzyme Linked Immuno Sorbent Assay use antibodies to detect the presence of one or more proteins specific to the allergenic food
- **PCR** (Polymerase Chain Reaction) use specific DNA primers to amplify and detect particular regions of **DNA specific** to the allergenic food.
- LFD (Lateral Flow Devices) 'Dipsticks' use antibodies to detect protein from the allergenic food
- LC-MS/MS or MS (mass spectrometry) use MS to detect peptides and peptide fragments specific to the allergenic food.

How well do the detection methods work for peanut in cumin or garlic ?

- FARRP initiated research as a response to variable results for detection of peanut in spices
- Investigated multiple commercially available methods (ELISA, PCR, lateral flow devices)
- Involved multiple laboratories, most ISO 17025 accredited.

A common problem with analysis

- Detecting an allergen in a water solution is easy
- The food matrix ('background') in which the allergen is present can greatly effect the ability of our tests to detect allergens
- Any food processing (e.g. heating) can also effect our results
- Spices often contain relatively high levels of polyphenols which can interfere with allergen detection
- Test methods are **validated** against certain types of food matrix. Most often these do not include spices.

Aim of the study

- Examine if methodological variation can account for the diversity of analytical results
- Not a laboratory assessment exercise
- Publish results laboratories blinded but methods unblinded (PCR methods often lab specific so will not be identified).
- Thanks to RSSL, IEH, Griffith Labs, Certified Labs, Olam Labs and Eurofins.

Study design

- Generate a series of peanut in cumin spikes containing known amounts of peanut (gravimetric).
- Sourced cumin from member company and thoroughly analyzed to ensure no peanut was present.
- Design spiking procedure to maximise homogeneity of samples.
- Test using a variety of quantitative and qualitative methods (commercial) **multiple laboratories involved**. Methods represent those frequently used by industry.

Performance at 0 ppm peanut - cumin

- No ELISA (6), lateral flow device (4) or PCR method (3) tested displayed positive (>BLQ) results in the 0 ppm peanut control.
- In these controlled samples, **no reproducible issue with false positive results** was observed.

Quantitative ELISA

Peanut ELISA kit	Spiked whole peanut in cumin (mg.kg- ¹)			
	4	1000	200000	
1	65.0 (317.5)	43.3 (235)	24.9 (179)	
2	91.4	78.6	na	
3	113.1	42.1	na	
4	19.8	17.3	na	
5	52.8	29.4	na	
6	nd	18.1	2.2	

•Very kit-dependent recoveries (from 19.8 to 113.1 % at 4 ppm whole peanut).

Qualitative methods

Qualitative detection	Concentration of whole peanut in cumin (mg.kg ⁻¹)		
method	Lowest detected level	Highest non-detected	
		level	
	Immunological methods		
LFD 1	2	0	
LFD 2	10	4	
LFD 3	200	20	
LFD 4	4	2	
	PCR methods		
PCR 1	20000	2000	
PCR 2	100	20	
PCR 3	2	0	

Peanut in garlic

- End 2015 began seeing positive (typically 5-50 ppm but some higher) peanut levels in garlic samples.
- Likely contamination **is not new**, but increased scrutiny of spices has led to detection.
- Affected products mostly powdered garlic.
- Collaborative research was organized by FARRP same methodology to that employed for cumin

Peanut in garlic

- Same experimental methodology (though fewer analyses)
 No observed false positive results with ELISA
- •Recoveries displayed **similar kit dependence** as observed with cumin

Peanut ELISA kit	Spiked whole peanut in garlic (mg.kg-1)			
	4	1000	200000	
1	55	47.5	21.9	
2	50	89.7	70.0	
3	77.5	60.9	55.5	
4	5.5	5.4	5.1	
5	11.25	10.8	10.3	
6	nd	nd	nd	

Recovery of peanut from a powdered garlic matrix (%)

Conclusions – allergen detection in cumin and garlic

- Commercial ELISA kits are capable of effective measurement of peanut in both cumin and garlic :
 - No false positive results
 - Variable but reasonable recoveries
- Care should be taken to validate qualitative methods (PCR, LFD)
- Recommend that labs use an in-house spike to ensure their testing methodology works for their matrix and analyte.

Almond in Paprika & Cumin

- In November 2014 CFIA found undeclared almond in a taco seasoning together with undeclared peanut but peanut became the focus.
- Late December 2014/early January 2015
 - Retail cumin sample in **U.K.** tested positive for almond
 - Paprika tested positive for almond by several ELISA methods
 - Levels generally in the 50 to 100 ppm range
 - Situation first developed in the U.K. but also observed in the U.S. and Canada

C 2015

Almond in Paprika & Cumin

- Mahlab spice a potential source of positive almond results?
 - Made from ground cherry pit seeds

- Cherry and almond belong to the genus Prunus
- Proteins from closely related species could have sufficient protein homology to cross-react in ELISAs
- Mass spectrometry was able to distinguish between almond and cherry, resulting in the rescindment of several recalls.

Conclusions and recommendations

- Allergens in spices is an **ongoing issue**, we still see positive test results at FARRP.
- Current allergen tests work well for peanut in garlic or cumin but validating your results using blank and spiked samples is best practice.
- Cross-reaction can be an issue, but generally only when a closely related species is present (not the case for peanut in cumin garlic).
- If you test and observe a positive result, **ask for advice** there have been cases where recalls are not necessary.
- Supplier evaluation is an important part of allergen control and required under US law (FSMA).

Thanks....

- The WSC
- Labs which participated in the research
- FARRP consortium

